Search results for "quantum chromodynamics: plasma"

showing 2 items of 2 documents

Quantum and classical dynamics of heavy quarks in a quark-gluon plasma

2018

We derive equations for the time evolution of the reduced density matrix of a collection of heavy quarks and antiquarks immersed in a quark gluon plasma. These equations, in their original form, rely on two approximations: the weak coupling between the heavy quarks and the plasma, the fast response of the plasma to the perturbation caused by the heavy quarks. An additional semi-classical approximation is performed. This allows us to recover results previously obtained for the abelian plasma using the influence functional formalism. In the case of QCD, specific features of the color dynamics make the implementation of the semi-classical approximation more involved. We explore two approximate…

heavy quarksheavy ion: scatteringNuclear Theoryapproximation: semiclassicalHigh Energy Physics::LatticeMonte Carlo methoddensity matrix: reducedhiukkasfysiikkaquantum chromodynamics: plasma01 natural sciencesBoltzmann equationLangevin equationHigh Energy Physics - Phenomenology (hep-ph)quarkonium: heavyquantum electrodynamicsQuarkonium suppression[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]quark gluon: plasmaMathematical physics[PHYS]Physics [physics]Quantum chromodynamicsPhysicsquarkonium: suppressionBoltzmann equationquark gluon plasmaLangevin equationHigh Energy Physics - Phenomenologyheavy quark: couplingQuarkNuclear and High Energy Physicsquark-gluon plasma[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciencesNuclear Theory (nucl-th)quantum chromodynamics0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityheavy quarkstochastic010306 general physicsplasma: weak couplingta114010308 nuclear & particles physicsHigh Energy Physics::Phenomenologykvarkki-gluoniplasmaTime evolutionPlasmaHeavy Ion Phenomenologyfree energyrecombinationabelian[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quark–gluon plasmalcsh:QC770-798[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentJournal of High Energy Physics
researchProduct

Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe

2016

International audience; There are many interesting problems in heavy-ion collisions and in cosmology that involve the interaction of a heavy particle with a medium. An example is the dissociation of heavy quarkonium seen in heavy-ion collisions. This was believed to be due to the screening of chromoelectric fields that prevents the heavy quarks from binding, however in the last years several perturbative and lattice computations have pointed out to the possibility that dissociation is due to the finite lifetime of a quarkonium state inside the medium. Regarding cosmology, the study of the behavior of heavy Majorana neutrinos in a hot medium is important to understand if this model can expla…

Quarkcosmological modelParticle physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]QC1-999Populationdissociationquantum chromodynamics: plasma01 natural sciences7. Clean energydark matterCosmologythermalquarkonium: heavyBaryon asymmetryparticle: heavy0103 physical sciencesquantum chromodynamicseffective field theoriesheavy quarkNuclear Experiment010306 general physicseducationMajorana neutrinoslatticeeffective field theory: nonrelativisticQuantum chromodynamicsPhysicseducation.field_of_studyquantum chromodynamics: nonrelativisticquarkonium suppressionta114010308 nuclear & particles physicsPhysicsscreeningquarkonium: suppressionHigh Energy Physics::PhenomenologychromoelectricQuarkoniumheavy ionMAJORANAresummation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]baryon: asymmetryneutrino: Majoranaquarkonium: lifetimeNeutrinoQuark Confinement and the Hadron Spectrum
researchProduct